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1. Summary 

We report on a series of optical waveguides based on liquid crystals (LC) mixtures. In 

particular we study the nonlinear behaviour obtained only by an optical control of the optical 

parameters. The working principle used for each device is connected to a modulation of the 

LC refractive index with an optical laser beam, fiber coupled to the device itself. The choice 

of liquid crystal materials is related to their large (often referred as giant) optical 

nonlinearities, which implies low power optical control. 

 

2. Introduction 

All-optical nonlinear devices are able to process fast optical signals in communication lines 

without electrical control. These components bring a lot of advantages for many applications, 

because they allow exploiting more efficiently the huge bandwidth of optical fibers [1-5]. In 

fact all-optical signal processing limits the need of electro-optical conversion, typical 

bottleneck of any photonic system. The operation principle of all-optical components is based 

on nonlinear optical properties of materials such as lithium niobate, III-V semiconductors, or 

nonlinear polymers. Goals still to be reached in the realization of all optical components are a 

reduction of the pumping signal power and the realization costs. Liquid crystals (LC) are 

interesting optical materials for their nonlinear optical properties. They are transparent from 

UV to IR wavelengths with low scattering losses at wavelengths typically used in optical fiber 

systems [6-7]. Different devices have been demonstrated based on LC waveguiding properties 

[8], and all optical switches have been realised [9-10].  

Recently, some composite organic materials, such as azo-dye doped liquid crystals, have been 

engineered to obtain all-optical effects, which proved very efficient in terms of switching 

speed and low driving optical power [15, 16]. Light responsive materials react to external 

stimuli with changes in their mechanical, electrical, and optical properties [17]. In this 

framework, azo-dye doped Liquid Crystals  (LCs) [18] and azobenzene LCs (azo-LCs) [19] 
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are among the most promising materials for photo-switchable devices, since azobenzene 

derivates undergo reversible trans–cis isomerization process upon illumination with light 

(photo-isomerization), resulting in strong changes of optical properties of the material [20]. 

In azo-LC the nonlinear optical response is faster and stronger if compared to the one of LC 

doped with a non-mesogenic azo dye, such as the commonly used Methyl Red (MR) (4-

dimethylaminoazobenzene-20-carboxylic acid). One more advantage of using azo-LCs is the 

stability and absence of irreversible ‘‘storage’’ effects [21].  

We propose two class of devices, one based on silicon substrate and the other one based on 

glass substrate. For the first one we have realized a prototype and in the next paragraph we 

also report the numerical characterization.  

 

3. Optically controlled Silicon V-groove: methods, assumptions and procedures  

 

 

 

 

 

 

Fig. 1: Tridimensional schematic of the LCW and a representation of molecular director n̂  with tilt (θ)   and 

twist (φ) angle.  

 

 The waveguide structure, schematically illustrated in Fig. 1, consists of nematic LC (NLC) 

E7, often used as reference LC material, infiltrated in a recessed triangular silicon groove. 

The structure and the fabrication process are described in details in previous works [2,5]. The 

anisotropic preferential etching of Si (100) induces the characteristic V-groove. After a 

thermal oxidation step that produces an SiO2 layer, the V-groove is covered by an ITO coated 
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borosilicate glass. A thin layer of rubbed Nylon 6 is deposited on top of the ITO layer to 

promote an alignment of the NLC molecules. NOA 61 UV adhesive by Norland is used to 

seal the input and output and to define neat interfaces with the NLC core of the waveguide. 

Table 1 reports refractive indices of the materials, where n// and n⊥ are the two indices of 

refraction parallel and perpendicular to the molecular axis of the NLC respectively. 

 

 

 

 

 

Table 1: Refractive indices of silicon LCW device. 

 

4. Optically controlled Silicon V-groove: results and discussion 

The optical confinement of a laser beam at the wavelength of 1560 nm in a 15 µm width 

LCW, butt-coupled by a single mode fiber [6], is achieved when the effective refractive index 

of the LCW is higher than the glass-SiO2 cladding refractive index. An applied voltage is used 

to provide an LC pretilt over the Freedericksz threshold and a further director reorientation is 

obtained by increasing the input power of the laser beam. The extraordinary refractive index 

of the NLC depends on the sum of the molecular tilt θV, induced by a low frequency electric 

field by means of an applied voltage, and the tilt θop induced by the optial electric field 

according to the formula: 

 

 

Fig. 2a reports the experimental behaviour of the output power (Pout) versus input power (Pin) 

for different applied voltages. At voltages lower than 8 V the optical power transmission first 

increases linearly and then, at about only 10 mW, the behaviour becomes nonlinear due to the 
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n" cos
2 !V + !op( ) + n// sin

2 !V + !op( )
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Refractive index at λ = 1550 
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dependency of the optical molecular reorientation and of the consequent LC refractive index 

increase from the squared amplitude of the optical electric field [7]. At higher voltages, 

maximum transmission is reached because maximum reorientation is already provided by the 

applied voltage, therefore only a linear increase of the output power is observed. The 

nonlinear behaviour of the LCW was modeled by considering both the electrically and 

optically induced molecular reorientation. The LC director orientation corresponds to the 

minimum free energy F reported in Equation (2), composed of the elastic Felastic, electrostatic 

Felectrostatic and optical Foptical contribution [8]: 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2:  Experimental (a) and simulated (b) results of output versus input power for different voltages. 

 

The elastic energy, also known as Oseen–Frank, indicated as Felastic, depends on K11, K22 and 

K33 which are the elastic constants of the NLC (splay, twist and bend respectively). Felectrostatic 

represents the energy contribution due to the electric field Ees of an applied voltage V, where 

ε⊥es is the dielectric permittivity when an electric field at low frequency is applied 

perpendicular to the director n̂  and ∆εes is the relative dielectric anisotropy. The last 
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contribution Foptical represents the energy due to the electric field referred to the optical 

excitation (Eop), where ε⊥op and ∆εop refer to the optical frequencies.  

The minimization of F is achieved by solving the Euler-Lagrange equation of F. In order to 

solve the partial derivative equation, a finite element method is well suited since it allows the 

implementation of the weak form of the Euler-Lagrange equation. Moreover, a mesh made of 

triangular elements perfectly matches the triangular geometry of the waveguide. A detailed 

model for a similar LCW in a silicon groove based on a 2D finite element method is reported 

in [9]. The weak form method is implemented on COMSOL Multiphysics®, which uses finite 

element method and couples the problem of the stationary value of F with the solution of the 

Poisson equation for the distribution of the electric field in the structure. Strong anchoring is 

assumed with a pretilt of 3° at all boundaries. Lateral boundary condition and both LC tilt and 

twist angles are considered in the simulation. Beam propagation method is used to simulate 

the propagation of an optical beam at a wavelength of 1560 nm in the LCW in which the 

optical reorientation is induced. The effective index profile that defines the optical structure of 

the waveguide is extracted from the solution of the Euler-Lagrange and Poisson equations. 

The effect of both coupling and propagation losses of the waveguide are also taken into 

account [2]. Simulation results are reported in Fig. 2b. 

Comparison between experimental data and simulation results shows that our model describes 

the nonlinear behaviour of the LCW with comparable values of both input and output power. 

Different voltages between theory and experiment, for which optical nonlinearity of the LCW 

transmission is observed, are likely due to the presence of defects on the groove walls 

perturbing the LC orientation. Such defects, not included yet in our model, counteract the free 

molecular orientation, requiring a higher applied voltage than the calculated one.  

Preliminary numerical simulations on AZO-LC V-groove show that it is possible to use only 

an optical pump to obtain molecular LC reorientation, without the necessity of an external 

bias voltage. 

Distribution A:  Approved for public release; distribution is unlimited.
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Fig. 3 shows a preliminary simulation with a standard LC dopant methyl red.  

 

 
Fig. 3:  Optically controlled MR:NLC optical waveguide transmission. 

 
It can be observed that the waveguide is switched on by the optical signal with a power of just 

about 5 mW. Novel azo-dye LC mixtures can be also used to obtain also faster response 

below microsecond regime. The specific mixture considered is the NLC 1005 (provided by 

Beam Engineering [22]), a multi-component compound based on a series of 4-n-alkyl-40-n-

alkoxyazobenzenes [23].  

The rod-shaped trans-form of an azo-molecule is bent into its cis-form when absorbing 

radiation in the ultraviolet (UV)-green region. Absorption of radiation at longer wavelengths 

induces the reverse process. Accumulation of cis-isomers reduces the LC order parameter and 

can transform the LC mesophase into its isotropic phase [24], [25]. Varying the concentration 

of trans and cis isomers via photoisomerization can change the refractive index of the 

mixture, because of the concentration dependence in both the LC dielectric properties and the 

order parameter.  

In this way, it is possible to modulate the transmittance of the LCW varying the refractive 

index of the NLC with an optical pump. New waveguide samples are currently in preparation 

to be filled with azo-LC mixtures.  
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5. All optical polymeric waveguide: methods, assumptions and procedure  

The numerical calculations presented in this section represent a theoretical ground for an 

experimental realization of the rectangular liquid crystal waveguide, schematically illustrated 

in Fig. 4. 

 

 

 

 

 

 

 

Fig. 4. Schematic of the rectangular LC waveguide with a representation of the molecular director    . 

 

 It is based on a NLC E7 (Merck) infiltrated in a rectangular SU8 hollow on glass substrate. 

The NLC is the core material of the waveguide, whereas the cladding is represented by the 

glass and SU8 photoresist. The rectangular gap of SU8 to be filled with the NLC (width and 

height of 15 µm) is obtained by a photolithographic step. The substrate glass is a 500 µm 

thick borosilicate glass D263 (Schott) with a refractive index slightly higher than the LC 

ordinary refractive index (see Table 2). A polymer is deposited by spin coating on the 

surfaces in contact with NLC to obtain, after an alignment process, the desired NLC 

molecules distribution.  

 

 

 

Table 2: Refractive indices of device materials 
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The NLC is infiltrated by capillarity in the gap and next sealed by a UV adhesive NOA61 

(Norland) at both input and output of the waveguide. The use of these polymer stoppers 

prevents formation of droplets, which cause large input and output scattering. 

A rectangular hollow waveguide permits a better fiber coupling with lower coupling losses 

and better polarization maintaining during propagation than a V-waveguide previously 

reported [8].  

The LC molecular director represents the average unit vector of the molecular orientation. Its 

reorientation depends on an applying external field, on the NLC characteristics and on the 

anchoring conditions. In this case the external field is provided by an optical laser pump 

emitting a wavelength of 1.550 µm with a TE polarization. The molecular director 

distribution was obtained with the minimization of the free energy written in its integral form 

given by the Oseen–Frank equation [11]: 

 

 

 

 

The elastic energy, indicated as Fel, depends on K11, K22 and K33, which are the elastic 

constants of the NLC (splay, twist and bend respectively). Fopt represents the energy due to the 

electric field referred to the optical excitation (      ), where ε⊥opt is the dielectric permittivity 

when an electric field at optical frequencies is applied perpendicular to    and Δεopt is the 

relative dielectric anisotropy.  

The minimization of F is achieved by solving the Euler-Lagrange equation of F. In order to 

solve the partial derivative equation, a finite element method is well suited since it allows the 

implementation of the weak form of the Euler-Lagrange equation. Strong anchoring is 

assumed at all boundaries for tilt (θ ) and twist (φ). The tilt component is negligible 

considering a TE polarized beam. 
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6. All optical polymeric waveguide: results and discussion 

The effective refractive index of the waveguide can be modified by changing the twist angle 

by the external optical field or by the alignment conditions: 

   

ne !0 ,!opt( )=
n"n/ /

n2
"sin2 !0 +!opt( )+ n2

/ / cos2 !0 +!opt( )
 

where φ0 is the twist induced by the rubbing process and φopt is induced by the laser beam 

itself. Only when the effective refractive index of the LCW is higher than the SU8 one, light 

can propagate.  

Beam propagation method was used to simulate the propagation of an optical beam at a 

wavelength of 1560 nm in a 5 mm LCW in which the optical reorientation is induced. The 

effective index profile that defines the optical structure of the waveguide was extracted from 

the solution of the Euler–Lagrange equations. In Fig. 5 the effect of the optical beam on the 

effective refractive index of the fundamental mode is shown for different alignment 

conditions. The larger φ0 the less power is required to obtain a guiding mode. With a power of 

1 mW and φ0=50° it is possible to switch from a cut-off condition to a guided mode. Increase 

of φ0 induces an increase of the effective refractive index of the LCW (2) and in the 

nonlinearity of the NLC [12]. In Fig. 6 the molecular director reorientation is shown of the 

rectangular waveguide tuning the optical input power for fixed values of φ0. 

 

 

 

 

 

 

Fig. 5. Refractive index of the fundamental mode varying the input optical power for different alignment 
conditions. 

 

φ0=53° 

φ0=0° φ0=40° φ0=50° 

(4) 
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Fig. 6. Molecular director distribution for 0 and 25 mW of input optical power when φ0 = 50°. 
 

We used E7 to compare results with the previous structure on silicon but a further reduction 

of driving power can be obtained by filling with AZO-LC. Fabrication of samples is in 

progress. 

 

7. Conclusions 

We demonstrated two class of nonlinear optical waveguides controlled by an optical signal.  

The first consists of a commercial NLC mixture embedded in a SiO2/Si groove. The 

numerical simulation, obtained with an ad hoc model, confirms the experimental results 

obtained with characterization. An optical threshold is achieved as low as 10 mW for the 

nonlinear optical effects. 

In the other case we have a nonlinear LCW based on glass substrates. It consists in a 

rectangular hollow realized in SU8 photoresist two glass substrates filled with NLC. With a 

particular glass surface treatment (NLC alignment condition φ0) we can avoid the use of an 

external bias voltage, as in the upper case. By varying φ0 it is also possible to tune the optical 

power needed to enable the light propagation (< 1mW). These results represent an 

encouraging demonstration of a first step towards low driving power all-optical devices.  

Pin = 0 mW Pin = 25 mW 
φ0 = 50° 
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Preliminary numerical simulations on AZO-LC V-groove clearly show that it is possible to 

use only an optical pump to obtain molecular LC reorientation, without the necessity of an 

external bias voltage. New waveguide samples including AZO-LC are in preparation. 
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